NASA Contractor Report 187515
ICASE Report No. 91-13

ICASE

DISTRIBUTED MEMORY COMPILER DESIGN
FOR SPARSE PROBLEMS

Janet Wu

Joel Saltz

Harry Berryman
Seema Hiranandani

Contract No. NAS1-18605
January 1991

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

NASN

Nationa! Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(NASA-CR-187513) OISTRIGUTED MEMORY N91-18610

COMPILER DESIGN FOR SPARSE PROBLEMS Final
Report (ICASF) 41 p CsSCL 052
unclas

G3/60 0333461

¢

e

Distributed Memory Compiler Design for Sparse
Problems *

Janet Wu'!

Joel Saltz 2
Harry Berryman
Seema Hiranandani®

12

0
ABSTRACT

In this paper we describe and demonstrate a compiler and runtime sup-
port mechanism. The methods presented here are capable of solving a wide
range of sparse and unstructured problems in scientific computing. The
compiler takes as input a Fortran 77 program enhanced with specifications
for distributing data, and the compiler outputs a message passing program
that runs on a distributed memory computer. The runtime support for this
compiler is a library of primitives designed to efficiently support irregular
patterns of distributed array accesses and irregular distributed array parti-
tions. We present a variety of Intel iPSC/860 performance results obtained
through the use of this compiler.

!Computer Science Department Yale University New Haven CT 06520
2ICASE, NASA Langley Research Center Hampton VA 23665
3Computer Science Department Rice University Houston Tx 77251
*Research sypported by the National Aeronautics and Space Administration under
NASA contract NAS1-18605 while the authors were in residence at ICASE, Mail Stop
132C, NASA\Langley Research Center, Hampton, VA 23665, anQy NSF grant ASC-
ya 8819374~ T e

N

1 Introduction

During the past few years, a number of researchers have proposed integrat-
ing runtime optimization methods into compilers for distributed memory
multiprocessors. These optimizations are essential in scientific codes that
include sparse matrix solvers, or in programs that solve partial differential
equations using adaptive and unstructured meshes. We first identified a
set of relevant numerical codes that required runtime optimizations. After
identifying this set, we performed extensive experimental research on these
codes. The results of our experiments not only identified the major perfor-
mance bottlenecks in these codes but also helped us develop a rich set of
optimizations useful and essential to generating reasonably efficient code for
this class of problems on distributed memory machines. Once we developed
a collection of run time optimizations, we built a compiler that identifies
irregular computations and performs transformations to enhance the code.

The compiler takes as input a simplified Fortran 77 program enhanced
with specifications for distributing data, it outputs a message passing For-
tran program for the Intel iPSC/860 parallel computer. The compiler con-
sists of two distinct layers. The bottom layer is a library of runtime proce-
dures (Parti - Parallel Automated Runtime Toolkit at ICASE) designed to
efficiently support irregular patterns of distributed array accesses. The top
layer is a compiler that carries out program transformations and embeds
the Parti procedures. The Parti procedures support a variety of operations
that include off processor data fetches , off processor store updates on reduc-
tion operations performed on global data structures and storage of non-local
data. Parti also supports non-uniform distributed array partitions in which
each distributed array element can be assigned to an arbitrary processor.
A multicomputer program is generated in which all distributed memory ac-
cesses are carried out using embedded procedures.

It must be emphasized that the goal of this project is not to develop a
production quality compiler, but to demonstrate that run time optimizations
can be automatically and efficiently generated by a compiler. Most of the
complexity of our system is in the Parti procedures. The Parti procedures
have been developed so that that transformations needed to embed the ap-
propriate primitives can be implemented with relative ease in distributed
memory compilers. It may be noted that while this system’s top layer is
experimental and is far from being production quality code, the lower layer
is currently being distributed [6].

The details of the transformations performed by the ARF compiler are

described in section 2. Section 3 describes the Parti run time primitives
that have been implemented and incorporated in the compiler. In section
4 we describe the ARF language and the overall compiler strategy that
demonstrates the interaction between the two layers of the ARF compiler.
We describe the compiler in the context of two code examples. These exam-
ples are written in ARF and translated to iPSC/860 code by our compiler.
In Section 5 we report experimental numbers for the codes compiled by the
ARF compiler. In Section 6 we describe the relationship between our work
and other related research projects in the area and we conclude in Section 7.

2 Distributed Memory Inspectors and Executors

In distributed memory machines, large data arrays need to be partitioned
between local memories of processors. These partitioned data arrays are
called distributed arrays. We follow the usual practice of assigning long
term storage of distributed array elements to specific memory locations in
the machine. Non-local reads require that a processor fetch a copy of that
element from the memory of the processor in which that array element is
stored. Alternately, a processor may need to store a value in a non-local dis-
tributed array element requiring the processor to write to non-local memory.
An issue that arises at this point is where does a processor store copies of
off-processor data. Due to the irregular nature of the access pattern, it is not
efficient to store the elements in temporary arrays or overlap areas proposed
by Gerndt [12]. Both these storage schemes result in large wastage of mem-
ory. We store local copies of off-processor distributed array elements in hash
tables called hashed caches. Hash tables result in less wastage of memory
and quick access of off-processor data. Run time primitives are implemented
to manage the hashed caches. These primitives initialize the hashed caches,
store and retrieve data from them and flush the hashed caches when appro-
priate. During program execution, a hash table records off-processor fetches
and stores. We are consequently able to recognize when more than one ref-
erence is being made to the same off-processor distributed array element, so
that only one copy of that element need be fetched or stored.

In distributed memory MIMD architectures, there is typically a non-
trivial communications latency or startup cost [8]. As an optimization we
block messages in order to increase the message size and reduce the number
of messages. This optimization can be achieved by precomputing what data
each processor needs to send and receive. The preprocessing needed to per-

[IRIEN]

Each processor P:

— Preprocesses its own loop iterations
— Records off-precessor fetches and stores in hashed cache
— Finds send/receive calls required for data exchange

1. P generates list of all off-processor data to be fetched

2. P sends messages to other processors requesting copies of
required data

3. Other processors tell P which data to send
4. Send/Receive pairs generated and stored

Figure 1: Inspector For Parallel Loop on Distributed Memory Multiproces-
sor '

form this optimization results in the generation of an inspector loop. Figure
1 describes the form of the inspector loop that is generated assuming the
original loop is parallel and thus blocking messages is legal. The distribution
of parallel loop indices to processors determines where computations are to
be performed. We assume that all distributed arrays referenced have been
defined and initialized and that loop iterations have been partitioned among
Processors.

During the inspector phase, we carry out a set of interprocessor com-
munications that allows us to anticipate exactly which send and receive
communication calls each processor must execute prior to executing the
loop. By contrast, individual fetches and stores carried out during the ac-
tual computation would result in expensive, inefficient and awkward code
[23]. For example, in such a case processor A might obtain the contents
of a distributed array element which is not on A by sending a message to
processor B associated with the array element. Processor B would have to
be programmed to anticipate a request of this type, to satisfy the request
and to return a responding message containing the contents of the specified
array element.

The inspector loop transformation described above assumes computing
the processor on which the non-local data resides is straight forward. For

example, if a one dimensional array is distributed in a block manner, simple
functions can be used to compute the processor and local offset of a particu-
lar array element. However, there are many situations in which simple, eas-
ily specified distributed array partitions are inappropriate. In computations
that involve an unstructured mesh, we attempt to partition the problem
8o that each processor performs approximately the same amount of work to
achieve load balancing and to minimize communication overhead. Typically,
it is not possible to express the resulting array partitions in a simple way. By
allowing an arbitrary assignment of distributed array elements to processors,
we have the additional burden of maintaining a data structure that describes
the partitioning. The size of this data structure must be the same as the
size of the the irregularly distributed array. We call this data structure a
distributed translation table. Distributed translation tables are partitioned
between processors in a simple straightforward manner described in Section
3.4.

In order to access an array element, we need to know where the element
is stored in the memory of the distributed machine. This information is
obtained from the distributed translation table. When a distributed trans-
lation table is used to describe array mappings, inspectors must be modified
so that they access the distributed table. The modifications made to an
inspector are outlined in Figure 2. In this case, the distributed translation
table is used to determine the processor on which an element resides.

Once the preprocessing is completed, every processor knows exactly
which non-local data elements it needs to send to and receive from the
other processors. we are therefore in a position to carry out the necessary
communication and computation. The loop is transformed into an ezecutor
loop. Figure 3 outlines the steps involved and they apply to irregular and
regular array mappings. The initial data exchange phase follows the plan
established by the inspector. When a processor obtains copies of non-local
distributed array elements, the copies are written into the processor’s hashed
cache. Once the communication phase is over, each processor carries out its
computation. Each processor uses locally stored portions of distributed ar-
rays along with non-local distributed array elements stored in the hashed
cache. When the computational phase is finished, distributed array elements
to be stored off-processor are obtained from the hashed cache and sent to
the appropriate off-processor locations. In the next section we describe the
details of the Parti run time primitives that may be invoked during the
inspector and executor phases.

Each processor P:

— Preprocesses its own loop iterations

Records off-processor fetches and stores in hashed cache

Consults distributed translation table to

+ Find location in distributed memory for each off-processor
fetch or store

Finds send/receive calls required for data exchange

1. P generates list of all off-processor data to be fetched

2. P sends messages to other processors requesting copies of
required data

3. Other processors tell P which data to send
4. Send/Receive pairs generated and stored

Figure 2: Inspector For Parallel Loop Using Irregular Distributed Array
Mapping

e Before loop or code segment

1. Data to be sent off-processor read from distributed arrays
2. Send/receive calls transport off-processor data

3. Data written into hiashed cache
o Computation carried out

— off-processor reads/writes go to hashed cache

o At end of loop or code segment

1. Data to be stored off-processor is read from hashed cache
2. Send/receive calls transport off-processor data

3. Data written back into distributed arrays for longer term storage

Figure 3: Executor For Parallel Loop on Distributed Memory Multiprocessor

3 Parti primitives

The Parti run time primitives can be divided into three categories; primitives
that may be invoked during the inspector phase, executor phase or both
inspector and executor phase. The scheduler primitive invoked during the
inspector phase, determines the send and receive calls that are needed during
the executor phase. These calls may be to either scatter, gather or perform
reduction operations during the executor phase. The distributed translation
table mentioned earlier is used during the inspector phase. The hashed
cache primitives are used during the inspector and executor phases. The
next section describes the details of the scheduler, distributed translation
table, scatter, gather, reduction and hashed cached primitives.

3.1 The Scheduler Primitive

Processors P(1) P(2)| P(3)
Global array a 1 2 3 4
local array a’ offsets 1 1 2 2

Figure 4: Mapping of a Global Array to Processors

We will use a simple example to illustrate the preprocessing carried out by
the scheduler. Assume we have a distributed array a that is partitioned
among three processors in an irregular fashion as depicted in Figure 4 and
there is a loop computation such that the access pattern of array a is as
shown in Figure 5. Each processor stores its elements of distributed array
a in a local array a. Thus processor P; needs to fetch array element a(3)

Processors P(1)] P(2) P(3)

Irregular access pattern of array a

Global array a 1 2 | 3 4

local array a offsets 1 1 2 2

Figure 5: Irregular Access Pattern

or element a'(2) of the local array from processor P, and proéeésors P, and

P3 needs to fetch a(4) or element a '(2) of the local array from P;. Recall

that the task of the scheduleris to anticipate exactly which send and receive
communications must be carried out by each processor. The scheduler first
figures out how many messages each processor will have to send and receive

during the data exchange that takes place in the executor phase. Defined

on each processor P! is an array nmsgs Each processor sets its value of
nmsgsi(j) to 1 if it needs data from processor j or to 0 if it does not.
The scheduler then updates nmsgs on each processor with the element-by-
element sum nmsgs*(j) « Y, nmsgs*(7). This operation utilizes a function
that imposes a fan-in tree to find the sums. At the end of the fan-in, on all
processors, the entries of nmsgs are identical. The value nmsgs(j) is equal
to the number of messages that processor PJ must send during the exchange
phase. In our example scenario, we see that at the end of the fan in, the
value of nmsgs on each processor is [2,1,0] (Figure 6). Thus P; is able
to determine that it needs to send data to two other (as yet unspecified)
processors, P needs to send data to one processor and P3 does not need to
send any data.

At this point, each processor transmits to the appropriate processor, a
list of required array elements. This list contains the local offsets of the
global array elements. In our example, P; sends a message to P, requesting

L L LN TG TN U AR T

element 2 of the local array a'; P; and P; send a message to P; requesting
element 2 of the local array a’. Each processor now has the information
required to set up the send and receive messages that are needed to carry
out the scheduled communications (Figure 7).

P(1) needs| | P(2) needs| | P(3) needs

data from data from data from
P(2) P(1) P(1)
Input to sum [0 1 0] [1 0 0:' I_—_l 0 O:I

tree

Output from [2 1 O:I [2 1 0] [2 1 0:|

sum tree
distributed to

all processors

Figure 6: Computing the number of Send Messages

3.2 Data Exchange Primitives

Data exchangers can be called by each processor to:
gather data from other processors,
scatter data to other processors, or
perform global reduction operations

These exchangers use state information stored by the scheduler. As de-
scribed in the previous section the scheduler determines the send and receive
calls needed to carry out data exchanges. The scheduler is not given any

9

Send Processors P(1)| P(2) P(3)

Messages sent by the processors

Receiving Processors P(l) P(Z) P(3)

Data sent by the processors: local array a’ 2 2 2

Figure 7: Final Message Pattern

information about memory locations - it involves only processors and local
indices.

When a processor P calls a data exchanger, it passes to the ezchanger

routine the starting address of the first local array element in its memory.
We call this address Ap. The ezchanger routines use Ap to read or write
distributed array elements. The schedule generated by the scheduler can
be reused. A schedule can also be used to carry out identical patterns of
data exchange on several different identically distributed arrays or on several
different identically distributed array sections. The same schedule can be
reused to repeatedly carry out a particular pattern of data exchange on a
single distributed array, and any of the data exchange primitives can make
use of a given schedule. -

3.3 Calling Sequence of Scheduler and Data Exchanger

In this section, we give a specific example of the calling sequence used to
invoke the schedule and data exchange primitives. We consider the following
two Parti procedure calls:

10

R T R RN T T TR A | F (T

call scheduler(id,n,hashed-ca.che,loca.l-indices,processors)
call gather-exchanger(id,hashed-cache local-array).

In this example, processor arranges to obtain copies of specified off-processor
data elements, these copies are placed in the hash table hashed-cache.

Each processor passes to scheduler a list of off-processor local array in-
dices. The scheduler will build a schedule that will make it possible for P
to obtain n data elements. P will obtain data element i, 1 < i < n from
processor processors(i), local index local — indices(i). A previously allo-
cated hash table hashed — cache is used to eliminate duplicate off-processor
indices. scheduler returns an integer id which is be used by a subsequent
call to gather-ezchanger.

Each processor the calls gather-ezchanger. gather-ezchanger passes the
address of the memory location local — array in which each processor stores
its portion of a distributed array. gather-ezchanger returns copies of the
requested off-processor array elements, these copies are placed in the hash
table hashed-cache.

3.4 The Translation Table

We are able to allow a user to assign globally numbered distributed array
elements to processors in an irregular pattern, using a distributed translation
table. Recall that the scheduler and the data ezchangers deal with indices of
arrays that are local to each processor. The translation primitives, however,
assume that distributed array elements have been assigned global indices.

The procedure build-translation-table constructs the distributed transla-
tion table. Each processor passes build-translation-table a set of globally
numbered indices for which it will be responsible. The distributed transla-
tion table may be striped or blocked across the processors. With a striped
translation table, the translation table entry for global index i is stored on
processor i mod numprocs where numprocs is the number of processors. In
a blocked translation table, translation table entries are partitioned into a
number of equal sized ranges of contiguous integers, these ranges are placed
in consecutively numbered processors.

Dereference accesses the distributed translation table constructed in
build-translation-table. For a given distributed array, dereference is passed a
set of global indices that need to be located in distributed memory. Derefer-
ence returns the processors and memory locations where the specified global
indices are stored.

11

Table 1; Translation Table Entr
global | assigned | local

index | processor | index
Processor 1

W
n

1 1 1
2 2 1
Processor 2
3 2 2
4 1 2

Table 2: Results obtained from Dereference
global | assigned | local |- -

index | processor | index
Processor 1

1 1 1
3 2 2
Processor 2
2 2 1 -
3 2 2

call build-translation-table. Thus Py claims responsrblhty for indices 1 and
4, while P, claims responsﬂuhty for indices 2. and 3, We assume that the

transla.tlon table is partitioned between 2 processors by blocks. We depict
the translation table data structure in Table 1. Each entry of the translation
table assigns a processor and a local array index to each globally indexed
distributed array element. In our example, translation table information
about global indices 1 and 2 is stored in processor 1 while information
about global indices 3 and 4 is stored in processor 2. T

To continue our example, assume that both processors use the derefer-
ence primitive to find assigned processors and local indices corresponding to
particular global distributed array indices. In Table 2 we depict the results
obtained when processor 1 dereferences global indices 1 and 3, and processor
2 dereferences global indices 2, 3 and 4.

12

TEmmne menr o

3.5 The Hashed Cache

The usefulness of the Parti primitives described in Section 3 can be enhanced
by coupling these primitives with hash tables. The hash table records the
numerical value associated with each distributed array element. The hash
table also records the processor and local index associated with the element.

Dereference uses the hash table to reduce the volume of interprocessor
communication. Recall that dereference returns the processor assignments
and the memory locations that correspond to a given list of distributed
array indices. Each distributed array index may appear several times in lists
passed to dereference. The hash table is used to remove these duplicates.

The scheduler and the data exchange procedures use hash tables to store
copies of off-processor distributed array elements. Lists of off-processor dis-
tributed array elements passed to the scheduler may have duplicates, the
scheduler uses the hash table to remove these. The gather data ezchanger
(or gather-ezchanger) fetches copies of off-processor distributed array ele-
ments and then places the off-processor distributed array values in a hash
table. Similarly, scatter-ezchanger obtains copies of off-processor distributed
array elements from a hash table and writes the values obtained into a spec-
ified local array element on a designated processor. Primitives to support
accumulations to non-local memory use hash tables in the same way scatter
does.

Parti supplies a number of other primitives that support reading from,
as well as writing and accumulating to, hash tables. When off-processor
accumulations must be performed, we first carry out all possible accumula-
tions to copies of distributed array elements in hash table, then we perform
an accumulation data exchange.

Currently, we use a hash function that, for a hash cache of size 2k,
masks the lower k bits of the key. The key is formed by concatenating the
processor-local index pair that corresponds to a distributed array reference.

4 The ARF Language

We have described in earlier sections the 2 distinct layers of the compiler.
We will now briefly describe the extensions that we have added to Fortran
77 to create the ARF (ARguably Fortran) language. ARF is an interface
between the application programs and the Parti run-time support primitives.
The ARF compiler generates inspector and executor loops with embedded
primitives,

13

Distributed arrays are declared in ARF source. These distributed arrays
can either be partitioned between processors in a regular manner (e.g. equal
sized blocks of contiguous array elements assigned to each processor), or
in an irregular manner. An ARF user declares a mapping into distributed
memory for each distributed array. When an array is to be partitioned in an
irregular fashion, mapping information is specified in a regularly distributed
integer array. Element i of the integer array describes the processor to which
element i of the distributed array is to be mapped Exa.mples are shown

below,

Si dlstrlbuted regular usung block real k(SIZE)

S2 dlstrlbuted egular using ‘block 1nteger map(SIZE)
S3 distributed 1rregu1a.r using map ‘real y(SIZE).

S1 declares that k is a real array, distributed in a regula.r ‘block manner,
S2 declares that map is an mteger array, also distributed in a regular block
manner. S3 declares a real ~array y whose distribution is to be determined

by the distributed mtege: a.rray map. In the examples we give in this paper,
all integer arrays used to specify irregular mappings were produced by hand-

coded partitioning procedures and then passed to an ARF routine.

- Another addition to Fortran 77 is the on clause The on clause has
been originally 1mp1emented in Kali [14]. Itis a mechanism’ by which the
user has control over distributing the iteration space or work load among
processors. Distribute dois an ARF language extension, this implies that the
loop iterations in a given do loop should be distributed between processors.
In the next section we use two examples to illustrate the transformations
and optimizations performed by the ARF compiler. These message passing

Fortran codes were generated by the ARF compiler.

4.1 Code Generation by the ARF Compiler

The ARF compiler transforms an ARF program into a target program which

incorporates the primitives needed to efficiently carry out the distributed
computation. The kernels we present here have been coded in ARF, com-
piled and run on an iPSC/860; in Section 5 we will present performance
data obtained from both kernels.

14

"

N

ey

4.1.1 Sparse Block Matrix Vector Multiply

In Figure 8 we present an ARF program that carries out a block sparse
matrix vector multiply. This kernel was obtained from an iterative solver
produced for a program designed to calculate fluid flow for geometries de-
fined by an unstructured mesh [26]. The matrix is assumed to have size 4
by 4 blocks of non-zero entries. Statements S4 and S5 are loops that sweep
over the non-zero entries in each block.

Integer array partition is local to each processor and enumerates a list
of indices assigned to the processor. As mentioned earlier, the current im-
plementation partitions only one dimension, the last dimension of the array.
The Parti primitives, however, do support a broader class of array map-
pings [7]. Thus partition describes the partitioning of the last dimension
of the arrays declared in statements S1 and S2. The ARF compiler uses
the information in partition to make calls to primitives that initialize the
distributed translation tables. These distributed translation tables are used
to describe the mapping of x, y , cols, ncols and f (statements S1 and
§2).

The partitioning of computational work is specified in statement S3 by
an on clause. In this example, distributed array partition is used to specify
which loop iterations are to be carried out on each processor. The reference
x(m,cols(j,1i)) in S6 may require off-processor references. ARF must con-
sequently generate an inspector to produce a schedule and a hash table to
handle accesses to the distributed array x. A reference to the irregularly
distributed array f occurs in statement S6. Note that distributed array
f is irregularly distributed using array partition and that partition is
also used by the on clause to partition loop iterations in §3. It can there-
fore be deduced that the reference to f in statement S6 is on-processor.
partition specifies how distributed array elements and loop iterations are
to be distributed between processors. A separate partitioning routine gen-
erates partition. In this paper, we simply assume that array partition
is passed to the sparse matrix vector multiply kernel after having been gen-
erated elsewhere.

The ARF compiler generates an inspector and an executor to run on
each processor. The work of the inspector is carried out on each processor
as follows:

Call build-translation-table using the mapping defined by array partition.
Generate distributed translation table Tpartition-

15

Call dereference to employ translation table Tpartition to find proces-
sor assignments, PA and local indices, LA for consecutive references to
z(m, cols(j,1)).

Pass PA and LA to scheduler,generate schedule S.
Use PA and LA to setup hash téble 8

The executor generated by ARF on processor P is depicted in Figure
9. In Figure 9 we use Fortran 90 notation where appropriate to enhance
readability. Off-prococessor elements of x are ga.thered and placed in a
hash table H (step I Figure 9). Values from x are obtained from H or from
local memory as is appropriate (step Ila, Fxgure 9). Arrays PA and LA are
used to distinguish local from off-processor array accesses. In step IIb, we
accumulate to y. Note that the declarations in S1 and S3 in Figure 8 allow
the compiler to determine that accumulations to y are local.

4.1.2 The Fluxroe Kernel

In section 5 we {Viﬂ sent the ARF compﬂer output “of a more complex
kernel. This kernel is s taken from a program that computes convective ﬂuxes
using a method based on Roe’s approximate Riemann solver [27], [28]; w
will call this kernel fluzroe. Fluxroe computes the flux across each edge of
an unstructured mesh. Fluxroe accesses elements of array yold, carries out
flux calculations and accumulates results to array y. As was the case in the
sparse block matrix vector multiply kernel, four sections of each array are
distributed and accessed in an identical manner. In Figure 10 we depict an
outline of the fluxroe kernel. We denote the indices of the two vertices that
comprise edge 1 by nl = n(i,1) and n2 = n(4,2). To compute the fluxes
f(3,k) across the ith edge, we need to access yold(nl,k) and yold(n2,k),
for 1 < k < 4 (part I Figure 10). Once the fluxes have been computed,
we add the newly computed flux values f(¢,k) to y(nl,k) and subtract
f(i,k) from y(n2,k) (part III Figure 10). Note that arrays y and yold
are 1rregu1a.rly distributed using y-partition, and that distributed array
node is irregularly distributed using edge-partition. Since the on clause
in the distributed do statement also uses edge-partition to specify how
loop iterations are to be partitioned, no off-processor references are made to
node in part I Figure 10.

In the inspector, we need to compute a schedule S, for the oﬁ'—processor
additions to y(nl, k) (part IIla Figure 10), and a different schedule S,; for

16

——

(i 10O CRR Y

S1 distributed irregular using partition real*8 x(4,n), y(4,n),f(4,4,maxcols,n)

S2 distributed irregular using partition integer cols(9,n), ncols(n)
.. initialization of local variables ...

S3 distributed do i=1,n on partition

do j=1,ncols(i)
S4 do k=1,4
sum = 0
S5 dom = 1,4
S6 sum = sum + f(m,k,j,i)*x(m,cols(j,i))
enddo
y(kji) = y(kji) + sum
enddo
enddo

enddo

Figure 8: ARF Sparse Block Matrix Vector Multiply

17

[T [

L. call gather-ezchanger using schedule S to obtain off-processor elements
of x

gather-ezchanger places gathered data in hash table H
count = 1
II. for all rows 7 assigned to processor P
do j=1,ncols(i)
dok=14

sum = 0
IIa. if PA(count) == P then
vx(1:4) = x(1:4,LA(count))
else

Use PA(count), LA(count) to get vx(1:4) from hash table
H

endif
do m=1,4
sum = sum + f(m,k,j,i)*vx(m)
end do
IIb. y(k,i) = y(k,i) + sum
end do

count = count + 1

end do R

Figure 9: Executor generated from ARF for Sparse Block Matrix Vector
Multiply

18

rern

the off-processor subtractions from y(n2,k) (part IITb Figure 10). When
parallelized, fluxroe reads as well as accumulates to off-processor distributed
array locations. As we pointed out in Section 3.2, any of the data exchange
primitives can use the same schedule. We can use schedule S,; to gather
off-processor references from yold(k,n1) (part Ia Figure 10), and we can
use schedule S,z to gather off-processor references from yold(k,n2) (part Ib
Figure 10).
The work of the inspector is carried out as follows:

Call build-translation-table using mapping defined by array y-partition.
Generate distributed translation table Ty_partition-

Call dereference to employ translation table Tj,_gartition t0 find:

1. Processor assignments PAy4 and local indices LAyy for consecutive
add accumulations to y(k,nl) (the same PApy and LApy can be
used for consecutive references to y(k,nl1)).

2. Processor assignments PAp2 and local indices LAp2 for consecutive
substract accumulations to y(k,n2) (the same PAp2 and LAp2 can
be used for consecutive references to y(k,n2)).

Pass PApy and LAnj to scheduler to obtain schedule Syy; pass PAn2 and
LApo to scheduler to obtain schedule Sya.

Setup hash tables Hyy and Hpo.

Figure 11 outlines the executor produced by ARF on processor P. In
Figure 11 we use Fortran 90 notation where appropriate to enhance read-
ability. In step Ia and Ib we gather two sets of off-processor elements of
yold using schedules Sp; and Sn;. In step II we access the appropriate ele-
ments of yold either from local memory or from the appropriate hash table,
and in step ITI we use yold values to calculate fluxes. If the newly com-
puted fluxes are to be accumulated to a local element of distributed array
y, the appropriate addition or subtraction is carried out at once (steps IVa
and IVc Figure 11). When a flux must be accumulated to a off-processor
element of y, we accumulate the flux to a copy of ¥ stored in a hash table
(steps IVb and IVd Figure 11). When all fluxes have been calculated and all
local accumulations are completed, we then call the scatter-add and scatler-
subtract exchangers. These exchangers carry out the needed off-processor
accumulations.

19

distributed irregular using y-partmon rea.l*8 yold(4,Number-nodes),
y(4,N umber-nodes)

distributed 1rregula.:r using edge-pa.rt1t10n mteger node(2 Number-edges)

.. initialization of local variables ...

distributed do i = 1,Number-edges on edge.partition
I nl= node(1,i)
n2 = node(2,i)

do k=1,4 - :
Ia. Va(k) yold(km1) ..___ .
Ib. Vb(k) = yold(k,n2) f '
end do

II. Calculate flux using Va(k), Vb(k)

III dok=14

IIIa y(k,nl) = y(k,nl) + ﬂux(k)
ITIb. y(k,n2) = y(k,n2) - flux(k)
end do - -

end &o o

Figure 10: ARF Kernel From Riemann Solver

20

L OB L 0 o N

LT

!

The current version of the ARF compiler attempts to minimize the num-
ber of schedules to be computed. We might have produced a single schedule
for all off-processor yold data accesses. If the inspector produced a single
schedule for all accesses to yold, it would have been necessary to compute
three different schedules in the inspector. Computing a single schedule for
all references to yold might have led to a more efficient executor at the cost
of a more expensive inspector.

4.2 Memory Utilization

We will give an overview of some of the memory requirements exacted by
the methods described in this section, and suggest some ways in which these
requirements can be reduced. Many sparse and unstructured programs use
large integer arrays to determine reference patterns. In this respect, the
kernels depicted here are typical. In Figure 8, a 9n element integer array
cols is used for this purpose; while in Figure 10, a size 2 * Number — edges
array node is employed. The executors depicted in Figure 9 and Figure 11
replace cols and node with local arrays that store the processor assignments
and the local indices for references to irregularly distributed arrays. In the
kernels in Figure 8, the sum of the number of elements used in all processors
to store both processor assignments and local indices is no larger than 18n;
in Figure 10 the parallelized code uses a total of 4x Number —edges elements.

The amount of additional storage needed for the parallelized code can
be reduced in the following simple manner. The iterations I of a loop are di-
vided into into two disjoint sets. The first set of iterations is I1oca1, Where
all memory references are to locally stored array elements. The second
set i Ioff_processor,in this set, each iteration contains some off-processor
distributed array reference. In this case we need only to list processor as-
signments for loop iterations Ioss_processor- Since it is frequently possible
to map problems so that most memory references are local to a processor,
a substantial memory savings will result.

The schemes described thus far would use very large quantities of extra
memory when attempting to handle a loop in which a small number of
distributed array elements are accessed many times. For instance, consider
the following loop where £ is a function defined so that 1 < f(#) < 2 for any
i.

21

Ta. call gather-ezchanger using schedule S,; to obtain first set of off-
processor elements of yold
gather-ezchanger pla,ces da.ta 1n hash table Hni.

Ib. call gather—ezchanger usmg schedule S,.g, to obta.m second set of off-

processor elements of yold
gather-ezchanger places data in hash table Hy,.

count = 1
II. for edges assigned to processor P

if (PApi(count) .EQ. P) then
va(1:4) = yold(1:4,LAp;i(count)) else
get va(1:4) from hash table Hyy
endif
if (PApa(count) EQ P) then
vb(1:4) = yold(1:4, LAﬂz(count)) else
get vb(1:4) from hash ta,bIe an
endif SR
III. Calculate fluxes flux(1: 4) using va(l :4) and vb(1:4)
IV. if PA,y(count) .EQ. P then - -

IVa. yold(1:4 LA,n(count)) yold(1:4 yLAn1(count)) + flux(1:4)

else
IVb. Accumulate ﬂux(1: 4) to ha.sh ta.ble Hni
endif ’
if PApz(count) .EQ. P then
IVc. yold(1:4,L Anz(count)) = yold(1:4,L Anz(count)) - flux(1:4)
else
IVd. Accumulate flux(1:4) to hash table Hys
endif

end do

count = count+1
Va. Call scatter-add ezchanger using schedule Sp1 and hash table Hyy.

Vb. Call scatter-subtract ezchanger using schedule Sp2 and hash table Hys.

Figure 11: Executor generatéd from ARF for Fluxroe Kernel

22

distributed irregular partition y

doi=1, HUGE - NUMBER

e ¥(£(i))
end do

In the above loop, the reference pattern of distributed array y is de-
termined by f. In this example, at most fwo distinct elements of y are
referenced in the loop. Loops of this sort can be handled by using a hash ta-
ble to store processor and local index assignments for each distinct memory
reference. In our example, each processor would have to store processor and
local index assignments for no more than two references to distributed array
y- There is a performance penalty that must be paid for using a hash table
to find processor and local index assignments for distributed array elements.
After examining a variety of sparse and unstructured codes, we chose not
to implement the method described in this section in the ARF compiler. In
[19], we present an analysis of the type of time and space tradeoffs outlined
in this section.

5 Experimental Results

In this section we present a range of performance data that summarizes the
effects of preprocessing on measures of overall efficiency and that gives some
insight into the performance effects of problem irregularity and partitioning.
Our computational experiments employed the fluxroe kernel and the block
sparse matrix vector multiply kernel. Both kernels were coded in ARF; the
parallelized benchmark numbers we present were obtained from programs
generated by the ARF compiler. It should be noted that the syntax accepted
by our ARF compiler differs in some minor ways from the that presented in
the previous sections.

The experiments described in this paper used either a 32 processor
iPSC/860 machine located at ICASE, NASA Langley Research Center or a
128 processor iPSC/860 machine located at Oak Ridge National Laborato-
ries. Each processor had 8 miegabytes of memory. We used the Greenhill
1.8.5 Beta version C compiler to generate code for the 80860 processors.

23

5.1 Unstructured Mesh Data

We use as input data a variety of unstructured meshes; both actual un-
structured meshes obta.xned from aerodynamic simulations and synthetically
generated meshes.

Unstructured Meshes from Aerodynamics : We use two different
unstructured meshes generated from aerodynamic simulations.

Mesh A A 21 672 element mesh genera.ted to carry out an aero-

configuration [17]. This mesh has 11143 points.

Mesh B: A 37,741 element mesh generated to simulate a 4.2 %
7c1rcula~r arc airfoil in a channel [1}. This mesh has 19155 points.

Each mesh pomt is assocmted Wlth an (a:,y) coq:dma.te in a physical
domain. We use domain information to partition the mesh in three
different ways; strips, orthogonal binary dissection algorithm ([5), [1 0])
and another mesh pa.rtxtlomng a.lgonthm jagged partitioning, descnbed
in [24].

Syﬁtheﬁe Mesh from Temp]atee

A finite difference template is used to link K points in a square two di-
mensional mesh. This connectivity pattern is incrementally distorted.
Random edges are introduced subject to the constraint that in the new
mesh, each point still requires information from X other mesh points.

This mesh generator makes the following assumptions:

I. The problem domain consists of a 2-dimensional square mesh of
N points,

II. Each point is untxally connected to K nelghbors determined by a
finite difference template,

III. With probability q, each mesh link is repla.ced by a link to a
randomly chosen mesh point.

Note that when ¢ is equal to 0.0, no mesh links are modified and
no changes are introduced by step III. When ¢ is equal to 1.0 we
have a completely random graph. In this paper we will make use of

two templa.tes One template connects each point to its four nearest
neighbors (K'=4); the other template connects each point to both its

24

four nearest neighbors as well as to each of its four diagonal neighbors
(K=8). We refer to the K = 4 template as a five point template
and we refer to the K =8 template as a nine point template. In the
experiments to be described in the rest of this section, we employed a
256 by 256 point mesh.

5.2 Overall Performance

We first present data to give an overview of the performance we obtained
on the iPSC/860 from the ARF compiler output. In the results depicted
in this section, we use a blocked distributed translation table. In Table 3
we present a) the inspector time: time required to carry out the inspector
preprocessing phase, b) computation time: the time required to perform
computations in the iterative portion of the program and c) the commu-
nication time: the time required to exchange messages within the iterative
portion of the program. The inspector time includes the time required to
set up the needed distributed translation table as well as the time required
to access the distributed translation table when carrying out the preprocess-
ing in the inspector. Unstructured Meshes A and B were partitioned using
orthogonal binary dissection. In these experiments, the ratio of the time
required to carry out the inspector to the computation time required for a
single iteration ranged from a factor of 0.7 to a factor of 3.6. Most of the
preprocessing time goes to setting up and using the distributed translation
table. For instance, consider the block matrix vector multiply on 64 proces-
sors using the 21,672 element mesh. The total preprocessing cost was 122
milliseconds, of which 111 milliseconds went to work related to the trans-
lation table. We define parallel efficiency for a given number of processors
P as the sequential time divided by the product of the execution time on
P processors times P. The sequential time was measured using a separate
sequential version of the each kernel run on a single node of the iPSC/860.
In Table 3 we depict under the column single sweep efficiency, the parallel
efficiencies we would obtain were we required to preprocess the kernel each
time we carried out the calculations. In reality, preprocessing time can be
amortized over multiple mesh sweeps. If we neglect the time required to pre-
process the problem in computing parallel efficiencies, we obtain the second
set of parallel efficiency measurements; the ezecutor efficiency presented in
Table 3. The executor efficiencies for 64 processors ranged from 0.48 to
0.59, while the single sweep efficiencies ranged from 0.10 to 0.17.

In the experiments depicted in Table 3, the time spent computing is

25

at least a factor of 2 greater than the communication time. The executor
efficiencies are, however, impacted by the fact that the computations in the
parallelized codes are carried out less efficiently than those in the sequential
program. The parallel code spends time accessing the hashed cache. It also
needs to perform more indirections than does the sequential program.

Table 3: Performance on different number of processors

nprocs | inspector comp comm | single sweep | executor
time(ms) | time(ms) | time(ms) | efficiency | efficiency
Sparse Block Matrix Vector Multiply - Mesh A
32 148 49 9 0.15 0.55
64 122 25 9 0.10 0.48
Sparse Block Matrix Vector Multiply - Mesh B
32 200 85 10 0.19 0.59
64 150 42 9 0.14 0.54
Flxioe - Meshd
8 231 310 24 0.40 0.69
16 162 157 21 0.34 0.65
32 135 80 22 0.19 0.57
64 172 41 19 0.12 0.48
R _Fluxroe - Mesh B - - o
8 393 534 23 0.41 0.70
16 249 269 18 0.36 0.68
32 191 156 23 0.28 0.62
64 203 69 14 0.17 0.59

In Table 4, we investigate the performance of the fluxroe kernel for
meshes with _varying degrees of regularity and for + varymg ‘mesh mappings.
We used 32 processors in this expenmeﬁ? In Table 4 we depict synthetic
meshes derived from 5 and 9 point stencils with probability of edge move ¢
equal to either 0.0 or 0.4. These meshes were mapped by 1-D strips or by 2-D
blocks. As one ‘might expect, for the synthetic meshes the communications
costs increase dramatically for increasing g. We see these dramatic increases
because both the volume of communication required and the number of
messages sent per node are much higher for large g. Preprocessing costs
also increased with ¢ but while the communications costs went up by at
least a factor of 16, preprocessing costs went up by at most a factor of 1.8.

We also depict in Table 4 results from Meshes A and B. We partitioned

26

HRNVE T R0

LRENT N

I

!

Table 4: Performance on 32 processors with different meshes

nprocs | inspector comp comm | single sweep | executor
time(ms) | time(ms) | time(ms) | efficiency | efficiency
5 point template synthetic mesh partioned into strips
q=0.0 200 275 22 0.49 0.82
q=0.4 310 293 361 0.25 0.37
5 point template synthetic mesh partioned into 2-D block
q=0.0 398 275 15 0.35 0.84
q=0.4 463 291 319 0.23 0.40
9 point template synthetic mesh partioned into strips
q=0.0 211 583 21 0.58 0.80
q=0.4 385 620 530 0.31 0.42
9 point template synthetic mesh partioned into 2-D block
q=0.0 447 589 20 0.46 0.79
q=0.4 595 624 527 0.28 0.42
Mesh A
binary 134 80 22 0.24 0.57
jagged 135 81 22 0.24 0.56
strips 148 83 26 0.22 0.53
Mesh B
binary 191 136 23 0.28 0.61
jagged 186 137 21 0.28 0.62
strips 219 149 31 0.24 0.54

27

the mesh in three different ways; strips, the orthogonal binary dissection
algorithm and jagged partitioning. Both binary dissection and the jagged
partitioning algorithm break the domain into two dimensional rectangular
regions, and the two methods produce very similar performance results.

5.3 Breakdown of Inspector Overhead

In Table 5, we measure the cost of dereferencing and scheduling the fluxroe
kernel on different numbers of processors. We again use a blocked translation
table. We use a five point template and we partition the mesh either into
1-D strips or into 2-D blocks. When the mesh is pa.rt1t10ned into strips,
dereference involves mostly local data accesses since the domain data and
the translation table are identically partmoned “When strip partitioning
is used, translation table initialization does not involve any communication.

The measurements presented in Table 5 are defined in the following manner:

Ezecutor time is the computation and communication time required to
execute the kernel 1t does not include time requzred for preprocessing,

Table :mtzahzatzon tzme is the tlme needed to initialize the distributed
translation table,

Dereference time is the time taken by the derefenehce Parti primitive,
and

Scheduler time is the time required to produce the communications
schedule once the required processor locations and local indices have
been found by dereference.

In Table 5 we note that the majority of the costs incurred by the in-
spector are due to the translation table initialization and dereference. For
instance consider the case where 64 processors are used to carry out a sweep
over a 2-D block partitioned mesh with a 5 point template. The translation
table initialization and dereference together require 183 % of the executor
time while the generation of the schedule requires only 12 % of the executor
time. :
In the problems depicted in Table 5, communication costs comprise a
rather small fraction of the executor time, consequently the method used
to partition the domain does not make a significant performance impact on
executor time. In Table 5, the costs of translation table initialization and of
dereference are both strongly dependent on how the domain is partitioned.

28

BE 1

HIAN |

e e

2.D block partitioning leads to higher translation table related costs, this is
almost certainly due to the increased communication requirements needed
for translation table initialization and dereference. Strip partitioning per se
does not necessarily lead to low translation table related costs. In Table 4
we note that strip partitioning actually leads to higher inspector costs for
both Mesh A and Mesh B. The translation table is partitioned so that blocks
of contiguously numbered indices are assigned to each processor. However in
Mesh A and Mesh B, mesh points are not numbered in a regular fashion so
the indices corresponding to a domain strip are not contiguously numbered.

Table 5: Cost of dereferencing and scheduling on different number of pro-
Cessors

nprocs | executor | table init | dereference | schedule
time (ms) | time (ms) | time (ms) | time (ms)

5 point template synthetic mesh partioned into strips
8 1192 131 143 83
16 606 115 109 42
32 297 92 83 27
64 167 63 62 17

5 point template synthetic mesh partioned into 2-D blocks
8 1189 333 595 83
16 599 192 311 42
32 290 136 235 26
64 158 7 212 19

5.4 Cost of translation table

In Section 3.4 we described two straightforward ways to map a distributed
translation table onto processors. We consider the question of how to dis-
tribute the translation table so as to minimize costs associated with trans-
lation table access. Table 6 compares the time required to carry out deref-
erence on blocked and striped translation tables by depicting:

the time required to carry out a particular call to dereference,

the average number of non-local accesses to table entries required by
dereference, and

the average number of non-local processors accessed during the call to
dereference.

29

When we examine the results for unstructured Meshes A and B, we
note no consistent performance difference in the cost required to dereference
a blocked or a striped translation table. Similar numbers of off-processor
table entries need to be accessed for either translation table distribution.
Blocked translation tables do lead to superior performance when we use
the synthetic meshes. For the reasons described in Section 5.3, we obtain
particularly good results when we use a striped partition with a blocked
translation table. It is of interest to note that the blocked translation table
also proved to be supenor when we used synthetlc meshes partitioned in

2.D blocks.

Table 6:iassistﬂ:c')fiiﬂe}éfér'énce on 32 pi'é)ééésors)

Problem Indirect - Blocked Indirect - Striped
Time | Nonlocal | Nonlocal | Time | Nonlocal | Nonlocal
(ms) | Data Proc (ms) | Data Proc
Synthetic: 5 point template, strip partition
q=0 109 256 1 346 2232 31
q=0.2 157 1045 17 365 2862 31
q=0.4 218 1825 17 368 3350 31
Synthetic: 5 point template, 2-D block partition
q=0 235 2143 9 336 2078 31
q=0.2 326 2841 25 355 2782 31
q=0.4 330 3352 25 370 3273 31
Mesh A
binary 97 768 21 96 743 31
jagged 98 772 20 98 751 31
strips 109 860 29 102 843 31
Mesh B
binary 130 1271 24 122 1230 31
jagged 139 1293 24 130 1263 31
strips 159 1519 31 172 1513 31

5.5 Scheduler and Data Exchanger Performance

To quantify the communications costs incurred by the Parti scheduler and
data exchange primitives, we measured the time required to carry out the
scheduler, gather-ezchanger : and scatter—ezchanger procedure calls and com-
pared them to the hand coded version of iPSC/860 supplied sends and re-

30

(NI TN G T

Table 7: Overheads for Parti Scheduler and Gather-Exchanger Primitives

Number of Send Gather- | Scheduler
Data Receive | Exchanger
Elements | Time(ms) | (ratio) (ratio)

100 0.5 1.0 21
400 1.0 1.1 14
900 1.8 1.1 1.3
1600 2.9 1.2 1.3

2500 4.3 1.2 1.1
3600 6.0 1.2 1.0

ceives; the sends and receives communicated the same amount of data as
did the Parti procedures. We performed an experiment in which two pro-
cessors repeatedly exchanged W single precision words of information. The
exchange was carried out using gather-exchangers, scatter-exchangers and
the iPSC/860 supplied send and receive calls. In Table 7 we depict the re-
sults of these experiments. We present the time (in milliseconds) required to
carry out the requisite data exchange using send and receive messages. We
then present the ratio between the time taken by the scheduler and gather-
ezchanger Parti primitive calls and the time taken by the equivalent send
and receive calls. The scatter exzchanger calls were also timed, the results of
which were virtually identical to that of the corresponding gather-ezchanger
call.

;From Table 7 we see that gather-ezchanger took no more than 20%
more time than explicitly coded send/receive pairs to move W words of
information between two processors. The additional overhead required for
scheduler to carry out the data exchange was a factor of 2.1 to 1.0 times the
cost of using explicitly coded send/receive pairs to move W words.

6 Relation to Other Work

Programs designed to carry out a range of irregular computations includ-
ing sparse direct and iterative methods require many of the optimizations
described in this paper. Some examples of such programs are described in
2], 16], [4], [29] and [10].

Several researchers have developed programming environments that are

targeted towards particular classes of irregular or adaptive problems. Williams

31

[29] describes a programming environment (DIME) for calculations with un-
structured triangular meshes using distributed memory machines. Baden [3]
has developed a programming environment targeted towards particle com-
putations, this programming environment provides facilities that support
dynamic load balancing.

There are a variety of compiler projects targeted at distributed memory
multiprocessors [30], [9], [21], [20], [1], [25]. With the exception of Kali
project [15], and the Parti work described here and in [22], [18], and [23];
these compilers do not attempt to efficiently deal with loops that arise in
sparse or unstructured scientific computations.

We have produced and benchmarked a prototype compiler that is able to
generate code capable of efficiently handling kernels from sparse and unstruc-
tured computations. The procedures that carry out runtime optimizations
are coupled to a distributed memory compiler via a set of compiler trans-
formations. The compiler described and tested in this paper is qualitatively
different from the efforts cited above in a number of important respects.
We have developed and demonstrated mechanisms that allow us to support
irregularly distributed arrays. Irregularly distributed arrays must be sup-
ported in order to make it possible to map data and computational work in

an arbitrary manner. Because we can support 1rregularly distributed arrays,
it was possible for us to compare the performance effects of different problem
mappings (Section 5). Support for arbitrary distributions was proposed in
[18] and [23] but to our knowledge, this is the first implementation of a com-
piler based distributed translation table mechanism for irregular scientific
problems.

We find that many unstructured NASA codes must carry out data ac-
cumulations to off-processor memory locations. We chose one of our kernels

to demonstrate this, and desxgned “our p: pr1m1t1ves and compiler to be able -

to handle this situation. To our knowledge, our compiler effort is unique
in its ability to efficiently carry out irregular patterns of off-processor data
accumulations.

We augment our pnmmves with a hash table des1gned to eliminate du-
plicate data accesses. In addition, we use the hash table to manage copies
of off-processor array elements. Other researchers have used different data
structures for management of off-processor data copies [15].- -~

32

e

I meN e [RRIIN

NS

HINT R L YR L RTE

st LU RN

7 Conclusion

In this paper we describe and experimentally characterize a compiler and
runtime support procedures which embody methods that are capable of
handling a wide range of irregular problems in scientific computing. After
examining a number of complete NASA codes, we chose to demonstrate our
methods using two kernels extracted from those codes. Both of these kernels
involved computations over unstructured meshes. We coded both kernels in
ARF, our dialect of Fortran, and generated code to ran on the nodes of the
iPSC/860. Detailed timings were carried out on both kernels using unstruc-
tured meshes from aerodynamics, along with meshes that were generated
by using random numbers to incrementally distort matrices obtained from
a fixed finite difference template. This benchmarking suite stressed the
communications capabilities of the iPSC/860 and the Parti primitives in a
variety of ways.

In the experiments we reported in Section 5.2, we saw that that the ratio
of the time required to carry out all preprocessing to the time required for
a single iteration of either kernel ranged from a factor of 0.7 to a factor of
3.6. We then saw in Section 5.3 that the majority of the preprocessing costs
arose from the need to support irregularly distributed arrays. In Section 5.5
the performance of the scheduler and data ezchanger Parti primitives were
quantified. The data-ezchangers turned out to be at most 20% more time
consuming than the analogous send and receive calls provided by Intel.

We believe that one of the virtues of our layered approach to distributed
compiler design is that we have managed to capture a set of critical op-
timizations in our runtime support primitives. Our primitives, and hence
our optimizations, can be migrated to a variety of compilers targeted to-
wards distributed memory multiprocessors. We intend to implement these
primitives in the ParaScope parallel programming environment [13]. In ad-
dition, Parti primitives can and are being used directly by programmers in
applications codes [7].

Most of the complexity of our system is in the Parti procedures. The
Parti procedures have been developed so that that transformations needed
to embed the appropriate primitives can be implemented with relative ease
in distributed memory compilers. The primitives used to implement the
runtime support include communications procedures designed to support
irregular patterns of distributed array access, and procedures to find the

33

location of irregularly mapped distributed array data using distributed trans-
lation tables. Primitives also support the maintenance of hash tables used
to store copies of off-processor data.

8 Acknowledgements

We would like to thank Harry Jordan and Bob Voigt for their careful editing
of this manuscript. We would also like to thank the Advanced Computing
Laboratory at Oak Ridge National Laboratories and NAS at NASA Ames
for providing us access to their 128 node Intel iPSC/860 hypercubes.

We wish to thank Dimitri Mavriplis and David Whitaker for supplying
us with unstructured meshes, and to David Whitaker and P Venkatkrishnan
for access to their codes.

34

[T

R IS YT TN T IR A I AT 1 T

References

[1] F. ANDRE, J.-L. PazaT, AND H. THOMAs, PANDORE: A system to
manage data distribution, in International Conference on Supercomput-
ing, June 1990, pp. 380-388.

[2] C. AsHcrAPT, S. C. EISENSTAT, AND J. W. H. L1v, A fan-in algo-
rithm for distributed sparse numerical factorization, SISSC, 11 (1990),
pp- 593-599.

[3] S. BADEN, Programming abstractions for dynamically partitioning and
coordinating localized scientific calculations running on multiprocessors,
To appear, STAM J. Sci. and Stat. Computation., (1991).

[4] D. BAXTER, J. SALTZ, M. SCHULTZ, S. EISENTSTAT, AND K. CROW-
LEY, An ezperimental study of methods for parallel preconditioned
krylov methods, in Proceedings of the 1988 Hypercube Multiprocessor
Conference, Pasadena CA, January 1988, pp. 1698,1711.

[5] M. J. BERGER AND S. H. BokHARI, A partitioning strategy for pdes
across multiprocessors, in The Proceedings of the 1985 International
Conference on Parallel Processing, August 1985.

[6] H. BERRYMAN AND J. SALTZ, A manual for parti runtime primitives,
Interim Report 90-11, ICASE, 1990.

[7) H. BERRYMAN, J. SALTZ, AND J. SCROGGS, Ezecution time support
for adaptive scientific algorithms on distributed memory machines, Re-
port 90-41, ICASE, May 1990.

[8] S. BoxnaRI, Communication overhead on the intel ipsc-860 hypercube,
Report 90-10, ICASE Interim Report, 1990.

[9] A. CuEUNG AND A. P. REEves, The paragon multicomputer envi-
ronment: A first implementation, Tech. Rep. EE-CEG-89-9, Cornell
University Computer Engineering Group, Cornell University School of
Electrical Engineering, july 1989.

[10] G. Fox, M. JoHNsON, G. LYZENGA, S. OTTO, J. SALMON, AND

D. WALKER, Solving Problems on Concurrent Computers, Prentice-
Hall, Englewood Cliffs, New Jersey, 1988.

35

[11]

[14]

[15]

(19]

[20]

Numerical methods for the computation of inviscid transonic flows with
shock waves - a gamm workshop, in Notes on Numercial Fluid Mechan-
ics, vol. 3.

H. M. GERNDT, Automatic parallelization for distributed memory mul-
tiprocessing systems, Report ACPC/ TR 90-1, Austrian Center for Par-
allel Computanon, _1990

s. HIRANANDANI K KENNEDY AND C TSENG Compiler support
for machine-independent parallel programming in fortran d, in Compil-
ers and Runtime Software for Scalable Multiprocessors, J. Saltz and
P. Mehrotra Ed1tors Amsterdam, The Netherlands, To appear 1991,
Elsevier.

C. KoeLBEL AND P. MEHROTRA, Compiling global name-space pro-
gmms for dwtrzbuted ezecution, Report 90 70 ICASE 1990.

C. KOELBEL P MEHROTRA AND J. V. ROSENDALE Supporting
shared data structures on dzstrzbuted memory architectures, in 2nd ACM
SIGPLAN Symposium on Principles Practice of Parallel Programming,
ACM SIGPLAN, Mar. 1990, pp. 177-186.

J. W. Lw, Computational models and task scheduling for parallel
sparse cholesky factonzatzon, Parallel Computmg, 3 (1986), pp. 327-
342,

D. J. MAVRIPLIS ,'Millitigrid solution of the two-dimensional Euler equa-
tions on unstructured triangular meshes, AIAA Journal, 26 (1988),
pp. 824-831.

R. MIRCHANDANEY, J. H. SavrTz, R. M. SMITH, D. M. NicoL, AND

K. CROWLEY, Principles of runtime support for parallel processors, in

Proceedings of the 1988 ACM International Conference on Supercom-
puting , St. Malo France, July 1988, pp. 140—152

S. MIRCHANDANEY J SALTZ P. MEHROTRA AND H. BERRYMAN, 4
scheme for supporting automatic data migration on multicomputers, in
Proceedings of the Fifth Distributed Memory Computing Conference,
Charleston S.C., 1990.

A. RogERs AND K. PING;\I;I, 'bejc;éés'drecorrrrzposition through locality
of reference, in Conference on Programming Language Design and Im-
plementation, ACM SIGPLAN, June 1989.

36

LA TR NN TN,] [) n

T ey m |

TR DAY 1P 0

(21]

[22]

[23]

[28]

[29]

M. RosING, R. SCHNABEL, AND R. WEAVER, Ezpressing complez
parallel algorihtms in dino, in Proceedings of the 4th Conference on
Hypercubes, Conurrent Computers and Applications, 1989, pp. 553-
560.

J. SALTZ AND M. CHEN, Automated problem mapping: the crystal
runtime system, in The Proceedings of the Hypercube Microprocessors
Conf., Knoxville, TN, September 1986.

J. SaLTz, K. CROWLEY, R. MIRCHANDANEY, AND H. BERRYMAN,
Run-time scheduling and ezecution of loops on message passing ma-
chines, Journal of Parallel and Distributed Computing, 8 (1990),
pp- 303-312.

J. Savtz, S. PETITON, H. BERRYMAN, AND A. RIFKIN, Performance
effects of irregular communications patterns on massively parallel mul-
tiprocessors, Report 91-12, ICASE, 1991.

P.S. Tsena, A Parallelizing Compiler for Distributed Memory Parallel
Computers, PhD thesis, Carnegie Mellon University, Pittsburgh, PA,
May 1989.

P. VENKATKRISHNAN, J. SALTZ, AND D. MavRrIpLs, Parallel precon-
ditioned iterative methods for the compressible navier stokes equations,
in 12th Intermational Conference on Numerical Methods in Fluid Dy-
namics, Oxford, England, July 1990.

D. L. WHITAKER AND B. GRossMAN, Two-dimensional euler compu-
tations on a triangular mesh using an upwind, finite-volume scheme,
in Proceedings ATAA 27th Aerospace Sciences Meeting, Reno, Nevada,
January 1989.

D. L. WHITAKER, D. C. SLACK, AND R. W. WALTERS, Solution algo-
rithms for the two-dimensional euler equations on unstructured meshes,
in Proceedings ATAA 28th Aerospace Sciences Meeting, Reno, Nevada,
January 1990.

R. D. WILLIAMS AND R. GLowINsKI, Distributed irregular finite ele-
ments, Tech. Rep. C3P 715, Caltech Concurrent Computation Program,
February 1989.

37

[30] H. ZmMa, H. BasT, AND M. GERNDT, Superb: A tool for semi-
autornatic MIMD/SIMD parallelization, Parallel Computing, 6 (1988),
pp. 1-18.

38

[

murnorn

(R IR A e

Wm Report Documentation Page

Space Agmasiahon

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA CR-187515
ICASE Report No. 91-13

4. Title and Subtitle 5. Report Date

DISTRIBUTED MEMORY COMPILER DESIGN FOR SPARSE PROBLEMS January 1991

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Janet Wu Seema Hiranandani 91-13
Joel Saltz

10. Work Unit No.

9. Performing Organization Name and Address 505-90-52-01

Harry Berryman

Institute for Computer Applications in Science 11. Contract or Grant No.
and Engineering 3
Mail Stop 132C, NASA Langley Research Center NAS1-18605

Hampton, VA 23665-5225 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Contractor Report

Langley Research Center 14. Sponsoring Agency Code
Hampton, VA 23665-5225

15. Supplementary Notes

Langley Technical Monitor: Submitted to IEEE Transactions
Michael F. Card Software Engineering

Final Report

16. Abstract

In this paper we describe and demonstrate a compiler and runtime support
mechanism. . The methods presented here are capable of solving a wide range of
sparse and unstructured problems in scientific computing. The compiler takes as
input a Fortran 77 program enhanced with specifications for distributing data, and
the compiler outputs a message passing program that runs on a distributed memory
computer. The runtime support for this compiler is a library of primitives designed
to efficiently support irregular patterns of distributed array accesses and irreg-
ular distributed array partitions. We present a variety of Intel iPSC/860 per-
formance results obtained through the use of this compiler.

17. Key Words (Suggested by Authorl(s)) 18. Distribution Statement
distributed memory, unstructured grids, 60 - Computer Operations and Hardware
sparse, compilers 61 - Computer Programming and Software

Unclassified - Unlimited

19. Security Classif. {of this report} 20. Security Classif. (of this page) 21. No. of pages 22. Price
Unclassified Unclassified 40 AO3

NASA FORM 1626 OCT 86
NASA-Langley, 1991

